Multi-Graph Convolution Collaborative Filtering

Jianing Sun¹, Yingxue Zhang¹, Chen Ma²¹, Mark Coates², Huifeng Guo³, Ruiming Tang³ and Xiuqiang He³

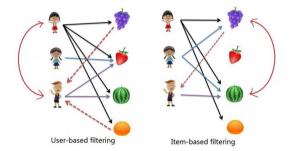
¹Huawei Noah's Ark Lab, Montreal Research Center, QC, Canada

²McGill University, Montreal, QC, Canada

³Huawei Noah's Ark Lab, Shenzhen, China

Background

Collaborative Filtering: how likely a user will adopt an item based on the historical interactions, i.e. purchase and click



Two key components in modern CF models:

- Embedding: transform users and items to vectorized representations
- Interaction modeling: reconstruct historical interactions based on the embeddings, e.g. cosine similarity

Motivation

- Link prediction is at the core of recommender systems
- User item interaction can be readily modelled as a bipartite graph
- How well is the link prediction depends on how much latent information/user-item relationship that the learned user/item embeddings can represent
- Capture latent similarities & high-order connectivity & model complex user-item relationship

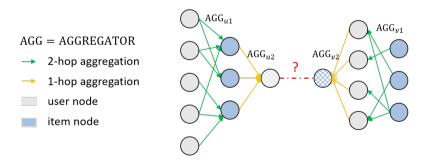
Motivation

- Link (Edge) prediction is at the core of recommender systems
- User item interaction can be readily modelled as a bipartite graph
- How well is the link prediction depends on how much latent similarities/user-item relationship that the learned user/item (Node) embeddings can represent
- Capture latent similarities & high-order connectivity & model complex user-item relationship (Graph)

Collaborative filtering is a natural scenario for learning on graphs.

Component 1: Bipartite Graph Convolutional Networks (Bipar-GCN) between users and items to iteratively aggregate k-hop neighborhood information:

- forward sampling: random sample neighbors from 1 to k search depth
- backward aggregating: train a set of aggregators to extract different information in a convolution manner, with shared parameters across nodes.



• We apply an element-wise weighted mean aggregator with learnable weights \mathbf{Q}_{u}^{k} :

$$\mathbf{h}_{\mathcal{N}(u)}^{k-1} = \operatorname{AGGREGATOR}_{u} \left(\left\{ \mathbf{h}_{v}^{k-1}, v \in \mathcal{N}(u) \right\} \right),$$
(1)

$$\operatorname{AGGREGATOR}_{u} = \sigma \left(\operatorname{MEAN} \left(\left\{ \mathbf{h}_{v}^{k-1} \cdot \mathbf{Q}_{u}^{k}, v \in \mathcal{N}(u) \right\} \right) \right).$$

where $\mathcal{N}(u)$ is the neighborhood of users.

• The layer-k embeddings of the target user u can be represented as:

$$\mathbf{h}_{u}^{k} = \sigma \left(\mathbf{W}_{u}^{k} \cdot [\mathbf{h}_{u}^{k-1}; \mathbf{h}_{\mathcal{N}(u)}^{k-1}] \right), \ \mathbf{h}_{u}^{0} = \mathbf{e}_{u}$$
(2)

• We apply the same operation on item nodes.

Component 2: Multi-Graph Encoding Layer (MGE)

- User-user graph and item-item graph are generated by computing the cosine similarity on rating matrix. Number of neighbors can be adjusted with a threshold.
- Learn on self graphs: for each user/item, we aggregate its adjacent information using a one-hop graph convolution layer with sum aggregator:

$$\mathbf{z}_{u} = \sigma \left(\sum_{i \in \mathcal{N}'(u)} \mathbf{e}_{i} \cdot \mathbf{M}_{u} \right),$$

$$\mathbf{z}_{v} = \sigma \left(\sum_{j \in \mathcal{N}'(v)} \mathbf{e}_{j} \cdot \mathbf{M}_{v} \right).$$
 (3)

Here $\mathcal{N}'(u)$ denotes the one-hop neighbourhood of user u in the user-user graph and $\mathcal{N}'(v)$ denotes the one-hop neighbourhood of item v in the item-item graph. \mathbf{M}_u and \mathbf{M}_v are weight matrices.

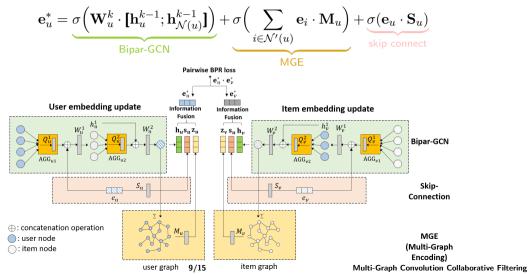
Component 3: Skip connection with input layer: refine the embedding with information passed directly from the input embedding.

Generally speaking,

- Bipar-GCN captures behavioural similarity between user and item.
- MGE captures proximity similarity of user-user and item-item.
- Skip connect captures individual node characteristics.

Overall Structure: $W_{u}^{k}, M_{u}, S_{u}, W_{v}^{k}, M_{v}, S_{v}, e_{u}, e_{v}$ are parameter vectors.

MUAWEI



Objective function

• Triplet loss function: BPR-MF¹

$$loss = \sum_{(u,i,j)\in\mathcal{O}} -\log\sigma(\mathbf{e}_{u}^{*}\cdot\mathbf{e}_{i}^{*} - \mathbf{e}_{u}^{*}\cdot\mathbf{e}_{j}^{*}) + \lambda ||\Theta||_{2}^{2} + \beta(||\mathbf{e}_{u}^{*}||_{2}^{2} + ||\mathbf{e}_{i}^{*}||_{2}^{2} + ||\mathbf{e}_{j}^{*}||_{2}^{2}),$$
(4)

where $\mathcal{O} = \{(u, i, j) | (u, i) \in \mathcal{R}^+, (u, j) \in \mathcal{R}^-)\}$ denotes the training batch. Θ is the model parameter set. \mathbf{e}_u^* , \mathbf{e}_i^* , and \mathbf{e}_j^* are the learned embeddings for user, positive item and negative item.

¹Rendle et al. BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI'09

Experimental Results

	Gowalla		Amazon-Books		Amazon-CDs		Yelp2018	
	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20
BPRMF	0.1291	0.1878	0.0250	0.0518	0.0865	0.0849	0.0494	0.0662
NeuMF	0.1326	0.1985	0.0253	0.0535	0.0913	0.1043	0.0513	0.0719
GC-MC	0.1395	0.1960	0.0288	0.0551	0.1245	0.1158	0.0597	0.0741
PinSage	0.1380	0.1947	0.0283	0.0545	0.1236	0.1118	<u>0.0612</u>	<u>0.0795</u>
NGCF	<u>0.1547</u>	0.2237	<u>0.0344</u>	<u>0.0630</u>	<u>0.1239</u>	<u>0.1138</u>	0.0581	0.0719
Multi-GCCF (d=64)	*0.1595	*0.2126	*0.0363	*0.0656	*0.1390	*0.1271	*0.0667	*0.0810
Multi-GCCF (d=128)	*0.1649	*0.2208	*0.0391	*0.0705	*0.1543	*0.1350	*0.0686	*0.0835

Table: Overall Performance Comparison.

Gowalla: 29,858 user, 40,981 item, 0.084%. Amazon-Books: 52,643 user, 91,599 item, 0.056%. Amazon-CDs: 43,169 user, 35,648 item, 0.051%. Yelp2018: 45,919 user, 45,538 item, 0.056%.

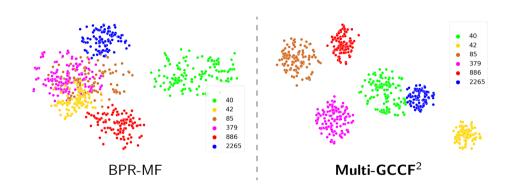
Classic CF methods: BPRMF, NeuMF; Graph-based CF methods: GC-MC, PinSage, NGCF

Ablation Studies

Architecture	Yelp2018			
Arcintecture	Recall@20	NDCG@20		
Best baseline (d =64)	0.0612	0.0744		
Best baseline (d =128)	0.0527	0.0641		
1-hop Bipar-GCN	0.0650	0.0791		
2-hop Bipar-GCN	0.0661	0.0804		
2-hop Bipar-GCN + skip connect	0.0675	0.0821		
2-hop Bipar-GCN $+$ MGE	0.0672	0.0818		
Multi-GCCF (d=128)	0.0686	0.0835		

Table: Ablation studies.

Embedding Visualization



²Multi-Graph Convolution Collaborative Filtering, Sun et.al, ICDM'19

Follow-up Work

- Multi-GCCF has been well-supported in MindSpore, a unified training and inference Al framework developed by Huawei.
- Multi-GCCF has been deployed in Huawei App store for a large-scale recommendation task.
- Some research directions: more sophisticated neighborhood aggregator structure, fast and efficient sampling method on graphs, etc.

Thank you!

