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Background

Collaborative Filtering: how likely a user will adopt an item based on the historical
interactions, i.e. purchase and click

Two key components in modern CF models:
• Embedding: transform users and items to vectorized representations
• Interaction modeling: reconstruct historical interactions based on the embeddings, e.g.

cosine similarity
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Motivation

• Link prediction is at the core of recommender systems

• User item interaction can be readily modelled as a bipartite graph

• How well is the link prediction depends on how much latent information/user-item
relationship that the learned user/item embeddings can represent

• Capture latent similarities & high-order connectivity & model complex user-item
relationship
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Motivation

• Link (Edge) prediction is at the core of recommender systems

• User item interaction can be readily modelled as a bipartite graph

• How well is the link prediction depends on how much latent similarities/user-item
relationship that the learned user/item (Node) embeddings can represent

• Capture latent similarities & high-order connectivity & model complex user-item
relationship (Graph)

Collaborative filtering is a natural scenario for learning on graphs.
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Methodology

Component 1: Bipartite Graph Convolutional Networks (Bipar-GCN) between users and
items to iteratively aggregate k-hop neighborhood information:

• forward sampling: random sample neighbors from 1 to k search depth

• backward aggregating: train a set of aggregators to extract different information in a
convolution manner, with shared parameters across nodes.
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Methodology

• We apply an element-wise weighted mean aggregator with learnable weights Qk
u:

hk−1N (u) = AGGREGATORu

({
hk−1v , v ∈ N (u)

})
, (1)

AGGREGATORu = σ
(

MEAN
({

hk−1v ·Qk
u, v ∈ N (u)

}))
.

where N (u) is the neighborhood of users.

• The layer-k embeddings of the target user u can be represented as:

hku = σ
(
Wk

u · [hk−1u ;hk−1N (u)]
)
, h0

u = eu (2)

• We apply the same operation on item nodes.
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Methodology

Component 2: Multi-Graph Encoding Layer (MGE)

• User-user graph and item-item graph are generated by computing the cosine similarity
on rating matrix. Number of neighbors can be adjusted with a threshold.

• Learn on self graphs: for each user/item, we aggregate its adjacent information using a
one-hop graph convolution layer with sum aggregator:

zu=σ

(∑
i∈N′(u) ei·Mu

)
,

zv=σ

(∑
j∈N′(v) ej ·Mv

)
.

(3)

Here N ′(u) denotes the one-hop neighbourhood of user u in the user-user graph and
N ′(v) denotes the one-hop neighbourhood of item v in the item-item graph. Mu and
Mv are weight matrices.
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Methodology

Component 3: Skip connection with input layer: refine the embedding with information
passed directly from the input embedding.

Generally speaking,

• Bipar-GCN captures behavioural similarity between user and item.

• MGE captures proximity similarity of user-user and item-item.

• Skip connect captures individual node characteristics.
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Methodology

Overall Structure: Wk
u,Mu,Su,W

k
v,Mv,Sv, eu, ev are parameter vectors.

e∗u = σ
(
Wk

u · [hk−1u ;hk−1N (u)]
)

︸ ︷︷ ︸
Bipar-GCN

+σ
( ∑
i∈N ′(u)

ei ·Mu

)
︸ ︷︷ ︸

MGE

+σ(eu · Su)︸ ︷︷ ︸
skip connect
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Methodology

Objective function

• Triplet loss function: BPR-MF1

loss =
∑

(u,i,j)∈O

− log σ(e∗u · e∗i − e∗u · e∗j )

+ λ||Θ||22 + β(||e∗u||22 + ||e∗i ||22 + ||e∗j ||22) ,
(4)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−)} denotes the training batch. Θ is the
model parameter set. e∗u, e∗i , and e∗j are the learned embeddings for user, positive item
and negative item.

1Rendle et al. BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI’09
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Experimental Results

Gowalla Amazon-Books Amazon-CDs Yelp2018
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPRMF 0.1291 0.1878 0.0250 0.0518 0.0865 0.0849 0.0494 0.0662
NeuMF 0.1326 0.1985 0.0253 0.0535 0.0913 0.1043 0.0513 0.0719

GC-MC 0.1395 0.1960 0.0288 0.0551 0.1245 0.1158 0.0597 0.0741
PinSage 0.1380 0.1947 0.0283 0.0545 0.1236 0.1118 0.0612 0.0795
NGCF 0.1547 0.2237 0.0344 0.0630 0.1239 0.1138 0.0581 0.0719

Multi-GCCF (d=64) ∗0.1595 ∗0.2126 ∗0.0363 ∗0.0656 ∗0.1390 ∗0.1271 ∗0.0667 ∗0.0810
Multi-GCCF (d=128) ∗0.1649 ∗0.2208 ∗0.0391 ∗0.0705 ∗0.1543 ∗0.1350 ∗0.0686 ∗0.0835

Table: Overall Performance Comparison.

Gowalla: 29,858 user, 40,981 item, 0.084%. Amazon-Books: 52,643 user, 91,599 item, 0.056%.
Amazon-CDs: 43,169 user, 35,648 item, 0.051%. Yelp2018: 45,919 user, 45,538 item, 0.056%.

Classic CF methods: BPRMF, NeuMF; Graph-based CF methods: GC-MC, PinSage, NGCF
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Ablation Studies

Architecture
Yelp2018

Recall@20 NDCG@20
Best baseline (d=64) 0.0612 0.0744
Best baseline (d=128) 0.0527 0.0641
1-hop Bipar-GCN 0.0650 0.0791
2-hop Bipar-GCN 0.0661 0.0804

2-hop Bipar-GCN + skip connect 0.0675 0.0821
2-hop Bipar-GCN + MGE 0.0672 0.0818
Multi-GCCF (d=128) 0.0686 0.0835

Table: Ablation studies.
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Embedding Visualization

BPR-MF Multi-GCCF2

2Multi-Graph Convolution Collaborative Filtering, Sun et.al, ICDM’19
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Follow-up Work

• Multi-GCCF has been well-supported in MindSpore, a unified training and inference AI
framework developed by Huawei.
• Multi-GCCF has been deployed in Huawei App store for a large-scale recommendation

task.
• Some research directions: more sophisticated neighborhood aggregator structure, fast

and efficient sampling method on graphs, etc.
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Thank you!
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