
FoodTracker: A Real-time Food Detection Mobile Application by
Deep Convolutional Neural Networks

anonymous

Abstract

We present a mobile application made to recognize
the food items of multi-object meal from a single image
in real-time, and then return the nutrition facts with
a components and approximate amounts. Our work is
organized in two parts. First, we build a deep convolu-
tional neural network merging with YOLO, the state-
of-the-art detection strategy, to achieve simultaneous
multi-object recognition and localization with nearly
80% mean average precision. Second, we adapt our
model into a mobile application with extending function
for nutrition analysis. After inferring and decoding the
model output in the app side, we present detection re-
sults with both bounding box and class label in either
real-time or local mode. Our model is well-suited for
mobile devices with negligible inference time and small
memory requirements with deep learning algorithm.

1 Introduction

With people paying increasing attention to track-
ing meal items and nutrition contents in daily life for
weight loss or medical purposes, self-managed food
monitoring has become one of the most practical ap-
plication of computer vision. However, most current
mobile apps (CarbandMove, MyFitnessPal, FatSecret,
etc) require manual data entry, which is tedious and
time consuming. Cordeiro et. al [1] conducted a sur-
vey in food journaling in 2015. They find that even if
80% (117/141) food journalers reported archiving data
with mobile apps, most users do not use such apps for
very long.

To avoid manual data recording, some recent
work [2] use computer vision techniques to reason
about meals, but it only works in laboratory condi-
tions with well-separated food items and the number
of categories is small. Google proposed a system called
Im2Calories [3] with a mobile app that can recognize
a food object in an image, and then predict its nu-
tritional content based on volume estimation. How-
ever, they rely on the menu database and restaurant
database collected from a specific area, and can only
recognize a single food object in an image. They gen-
erate segmentation mask instead a bounding box, but
this part is presented only in laboratory environment
with few categories.

The ideal system in food journaling is a real-time
automatic system including localization, recognition,
and precise volume estimation based on solely image

input. However, even though there is a large number
of prior work [4] [5] in this area, food journaling is still
widely considered difficult. The challenges stem from
causes such as: the vast range of intraclass variations,
the components complexity in many foods, e.g. sand-
wich, and the huge amount of categories and regional
specialty.

In this paper, we propose an approach, which uti-
lizes several state-of-the-art deep learning techniques,
trained to detect1 multiple food items in real-time.
Our system is tailored to run on a conventional mobile
phone with built-in camera, and present with nutrition
facts for each food item served in an unit amount.

We rely on our prior work producing a deep con-
volutional neural network (DCNN) model built upon
Mobilenet [6], adapting with a state-of-the-art one-
stage detection framework, YOLOv2 [7] to generate
bounding box and class label simultaneously. The net-
work structure is small and computationally inexpen-
sive thanks to the leverage of depth-wise separable con-
volution [8] and YOLOv2 strategy. Next we fit our
deep learning model into a mobile application by using
the TensorFlow Java API [9], and decode our model
output with short inference time with real-time user
image input. Finally, we present detection results with
the nutrition analysis in the app.

This paper is structured as follows. Section 2 ex-
plains in detail how depth-wise separable convolution
achieves less computation cost and parameter reduc-
tion. Section 3 describes how we process the training,
the DCNN architecture and the YOLO strategy. Sec-
tion 4 illustrates the mobile application prototype with
the user interface outline. Section 5 closes with a dis-
cussion and a summary of the future work.

2 Background

2.1 Depthwise Separable Convolution

Our DCNN structure is built upon MobileNet,
which is designed for mobile and embedded vision ap-
plications. MobileNet is based on a streamlined ar-
chitecture that utilizes depth-wise separable convolu-
tions [8] to construct lightweight deep neural networks.
A depth-wise separable convolution block factorizes a
standard convolution into a depth-wise convolution and
a 1x1 point-wise convolution. Compared to a standard

1Following common terminology, we denote by detect a com-
bination of localize and recognize.



convolution layer that filters and combines input fea-
ture maps into a new set of outputs in one step, depth-
wise separable convolution splits this process into two
layers, with a separate layers for filtering and combin-
ing.

By expressing standard convolution as a two-step
process, we achieve substantial reduction in both the
parameter count and the computation cost.

More precisely, in a standard convolution layer, we
denote by DF the spatial dimension of the input fea-
ture map, DK the filter width and height (assumed to
be square), M the number of input channels and N
the number of output channels. We also assume SAME
padding so that the output feature map has the same
spatial dimensions as the input.

Then, the parameter number ratio between depth-
wise separable convolution and standard convolution
is:

Dk ·Dk ·M +M ·N
M ·N · Dk ·Dk

=
1

N
+

1

D2
k

Likewise, the computation cost ratio between depth-
wise separable convolution and standard convolution:

Dk ·Dk ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF
=

1

N
+

1

D2
K

MobileNet uses depth-wise separable convolutions
with 3x3 filter size to require 8 to 9 times fewer com-
putations than the standard convolutions, with only a
small reduction in accuracy [6].

3 Food Detection

In this section, we first describe how to prepare the
training instances, outline the principle of YOLO, then
illustrate the overall DCNN architecture and present
the mean average precision (mAP) result validated on
UECFood100 [10] and UECFood256 [11] benchmarks.
These two datasets contain around 40K images (mostly
Japanese food items) in total with 100 and 256 cate-
gories, respectively.

3.1 Data Augmentation

Data augmentation represents the process of artifi-
cially increasing the number of training instances [12].
Previous research demonstrates that data augmenta-
tion can act as a regularizer in preventing overfitting
in neural networks [13]. Our DCNN model aims to
be applied in mobile devices with camera input in real-
time, which can vary in illumination, viewpoints, back-
grounds, etc. Thus we utilize several data augmenta-
tion methods to improve the robustness and alleviate
overfitting.

In particular, half of the training instances are pro-
cessed with one of the following data augmentation
methods: blur, horizontal flip, Gaussian noise or color
shift. Although the training time is increased by 5 to 6

Figure 1: MobileNet-YOLO Architecture. Each grey
triangle represents a convolution block. Blue triangle
represents standard convolution layer. Batch is the
number of training instances in each iteration.

times due to data augmentation, our model is more ro-
bust and less overfitting, which is critical and beneficial
for real-time image processing.

3.2 YOLOv2 Strategy

After downsizing the input resolution from (224,
224) to (7, 7) by 13 depth-wise separable convolution
blocks in MobileNet, we add one more convolution layer
reshaping the output size to be compatible with the
YOLO output layer.

The main idea here is to divide each input image into
(S, S) grid, and predict N bounding boxes in each cell
with the shape [bx, by, tw, th] for a bounding box along
with a box confidence score for each box. In this case,
tw, th are offsets for the N prior anchor boxes generated



by clustering.
To find out the suitable number of clusters and the

prior shapes of bounding boxes predicted in each cell,
we use the k-means cluster algorithm [14] to generate
prior anchors’ shapes with respect to the cluster num-
ber under the Intersection over Union (IoU) metric.
IoU is simply computed as the ratio of the area where
the two boxes overlap over the total union area of the
two boxes. We compute IoU for each KNN-generated
anchor with the ground truth box, then we compute
the average IoU under different cluster numbers from
1 to 10 to find the balance between number of anchors
with model complexity as shown in Fig. 2(a).

Even if more anchors lead to higher average IoU, the
complexity of model will also increase thereby giving
rise to higher computation cost with a little benefit in
performance. We find that k=5 gives a good trade-off
for average IoU vs. model complexity, and we elaborate
the five k-means generated prior anchors in Fig. 2(b).

(a) (b)

Figure 2: (a)K-means clustering box dimensions on
UECFood100. (b)Prior anchors illustration in an ex-
ample image.

3.3 DCNN Architecture

All convolution layers are followed by a batch-
norm [15] and ReLU nonlinearity [16] with an exception
of the final fully connected (FC) layer that has no non-
linearity, and feeds into a YOLO output layer. Count-
ing depth-wise and point-wise convolutions as separate
layers, our MobileNet-YOLO architecture has 30 lay-
ers with 3.5 million parameters in total. The overall
scheme is shown in Fig. 1 with two example inputs
with results. The input resolution for training is (224,
224).

For training, we use Adam [17] optimizer with lr =
1e − 4, reduce factor = 0.5, β1 = 0.9, β2 = 0.999, ε =
1e− 8, batch size = 16, with 11K iterations in total.

We evaluate our model on UECFood100 [10] and
UECFood256 [11] sets with validation on around 10K
food images. We achieve satisfying food detection
performance with 76.36% mAP on UECFood100 and
75.05% on UECFood256 with IoU=0.5 on validation
set, hence our model is well-suited to be fit into mobile
devices.

Figure 3: Left: real-time food detection example with
results. Right: local mode food detection and nutri-
tion analysis, user can select an picture for processing
from local gallery.

4 Mobile Application

We convert our trained model from .h5 file to .pb
file so that our model can make prediction by using
TensorFlow Java library [9].

For each inference, we decode the output and select
the bounding box with confidence score higher than
0.4, locate boxes by bx, by and adjust them based on
the prior anchors calculated in Section 3.3 with the
predicted offsets tw, th. Moreover, we perform non-
maximal suppression [18] to get rid of duplicate boxes
by checking if there are overlapping with predicted
boxes with more than 30% area.

We do not apply depth/volume estimation [19] in
this work. Considering that our datasets contain
mostly Asian food, which is usually served in a con-
tainer (similar to western fast food), we assume, that
the amount of each detected food item is one serving.
Our nutrition analysis function is inspired by NutriV-
ision [20], which utilizes one of the biggest global nu-
trition databases, Nutritionix [21], to analyze the nu-
trition content. Nutritionix contains more than 700K
food items ranging from common foods, restaurant
dishes and grocery foods. The deficiency of NutriV-
ision is it requires manual data entry. We call the
Nutritionix API based on our trained DCNN model’s
output, and return the one serving food item nutrition
facts on the user interface, as shown in Fig. 4.

There are two modes in our mobile app design as
shown in the left and right side of Fig. 3. One is
the real-time mode to fast infer the camera input per
frame and display the detection result including bound-
ing box, class label and confidence score in the screen.



Figure 4: Example of a multi-object nutrition analysis
user interface based on the food detection results.

Second is the local mode where user can select a local
image to do nutrition analysis along with food detec-
tion.

We do not rely on any remote server to do the com-
putation required for image inference. The inference
process is conducted solely in the mobile device. We
test our mobile app on a Google Pixel 2 with Android
9.0 system and a OnePlus 5 with Android 8.0 system
in both real-time and local mode. Thanks to our small
neural network design and efficient detection strategy,
our average wall clock time2 per image is 75ms and
average CPU time3 per image is 15ms in real time
(Table. 1), thereby there is almost no delay observed
by users.

5 Discussion and Future Work

The process of automatically detecting food objects
and extracting nutrition contents is very complicated,
especially when it comes to real life application. In
particular, it requires solving various problems, such
as: fine-grained recognition to distinguish subtly dif-
ferent forms of food, instance segmentation and count-
ing, mask generation, depth/volume estimation from
a single image. The existing state-of-the-art work fo-

2Wall clock time is the actual time taken by a computer to
complete a task. It is the sum of CPU time, I/O time, and the
communication channel delay.

3CPU time measures only the time during which the processor
is actively working on a certain task.

Table 1: App performance profile.

Inference time
CPU time 15ms

Wall clock time 75ms

DCNN model size 8.1MB

Runtime memory 242.2MB

cuses specifically on one of the sub-problems of food de-
tection with computer vision techniques [22] [23] [24].
However, they all focus on a single task with strict en-
vironmental conditions or external assistance so that
they are still far away from the holy grail of the auto-
mated food journaling systems.

Mobile application development is one of the most
promising areas because of wide popularity and usabil-
ity of smartphones. On the other hand, the limitation
of computational resources of mobile devices makes it
difficult to apply deep learning techniques. As for food
detection and nutrition analysis with computer vision,
many research conducted in laboratory environment
making use of the power with multiple graphic cards,
fewer of them have been generalized to mobile devices,
still among those even fewer have been made publicly
available.

For all these aforementioned problems, our work has
tackled some of these, but it is clear that there is much
more work to do. We believe that multi-task learning in
this area is essential as the process from image to nutri-
tion is involved with many computer vision problems.
Moreover, one of the shortage of current computer vi-
sion algorithms is most of them are supervised learning
thus all require training set with ground truth annota-
tions, which result in some limitations on the testing
categories, especially for food-related issue with count-
less food categories around the world.

In research to follow, we will be working on mask
generation with respect to volume estimation, and in-
vestigate how to better leverage deep learning into mo-
bile devices taking the computational resource limi-
tation into consideration. There are many details to
handle and many interesting problems from the point
of view of computer vision research. Nevertheless, we
believe that even a partial solution to these problems
could be of great value to the society. Further, we will
release the mobile app shortly in Google Play.

References

[1] E. Thomaz E. Bales A. K. Jagannathan G. D. Abowd
F. Cordeiro, D. Epstein and J. Fogarty. Barriers and
negative nudges: Exploring challenges in food journal-
ing. SIGCHI, 2015. 1

[2] Weiyu Zhang, Qian Yu, Behjat Siddiquie, Ajay Di-
vakaran, and Harpreet Sawhney. snap-n-eat: Food
recognition and nutrition estimation on a smartphone.



Journal of Diabetes Science and Technology, 9(3):525–
533, 2015. PMID: 25901024. 1

[3] A. Myers, N. Johnston, V. Rathod, A. Korattikara,
A. Gorban, N. Silberman, S. Guadarrama, G. Papan-
dreou, J. Huang, and K. Murphy. Im2calories: To-
wards an automated mobile vision food diary. In 2015
IEEE International Conference on Computer Vision
(ICCV), pages 1233–1241, Dec 2015. 1

[4] Ziad Ahmad, Marc Bosch, Nitin Khanna, Deborah A.
Kerr, Carol J. Boushey, Fengqing Zhu, and Edward J.
Delp. A mobile food record for integrated dietary
assessment. In Proceedings of the 2Nd International
Workshop on Multimedia Assisted Dietary Manage-
ment, pages 53–62, New York, NY, USA, 2016. ACM.
1

[5] C. J. Boushey, M. Spoden, F. M. Zhu, E. J. Delp,
and D. A. Kerr. New mobile methods for dietary as-
sessment: review of image-assisted and image-based
dietary assessment methods. Proceedings of the Nutri-
tion Society, 76(3):283294, 2017. 1

[6] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. CoRR, abs/1704.04861, 2017. 1, 2

[7] Joseph Redmon and Ali Farhadi. YOLO9000: better,
faster, stronger. CoRR, abs/1612.08242, 2016. 1

[8] François Chollet. Xception: Deep learning with depth-
wise separable convolutions. CoRR, abs/1610.02357,
2016. 1

[9] TensorFlow Java API. https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/java. 1, 3

[10] Y. Matsuda, H. Hoashi, and K. Yanai. Recognition of
multiple-food images by detecting candidate regions.
In Proc. of IEEE International Conference on Multi-
media and Expo (ICME), 2012. 2, 3

[11] Y. Kawano and K. Yanai. Automatic expansion of a
food image dataset leveraging existing categories with
domain adaptation. In Proc. of ECCV Workshop on
Transferring and Adapting Source Knowledge in Com-
puter Vision (TASK-CV), 2014. 2, 3

[12] Sebastien C. Wong, Adam Gatt, Victor Stamatescu,
and Mark D. McDonnell. Understanding data aug-
mentation for classification: when to warp? CoRR,
abs/1609.08764, 2016. 2

[13] Patrice Y. Simard, David Steinkraus, and John C.
Platt. Best practices for convolutional neural networks
applied to visual document analysis. In ICDAR, 2003.
2

[14] N. S. Altman. An introduction to kernel and nearest-
neighbor nonparametric regression. The American Statis-
tician, 46(3):175–185, 1992. 3

[15] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. CoRR, abs/1502.03167, 2015.
3

[16] Vinod Nair and Geoffrey E. Hinton. Rectified linear
units improve restricted boltzmann machines. In Pro-
ceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, ICML’10,
pages 807–814, USA, 2010. Omnipress. 3

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. CoRR, abs/1412.6980, 2014.
3

[18] Joseph Redmon, Santosh Kumar Divvala, Ross B. Gir-
shick, and Ali Farhadi. You only look once: Unified,
real-time object detection. CoRR, abs/1506.02640, 2015.
3

[19] Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep
convolutional neural fields for depth estimation from a
single image. CoRR, abs/1411.6387, 2014. 3

[20] NutriVision. https://play.google.com/store/apps/
details?id=edu.ucuccs.nutrivision&hl=en. 3

[21] Nutritionix API. https://www.nutritionix.com/database.
3

[22] Ya Lu, Dario Allegra, Marios Anthimopoulos, Filippo
Stanco, Giovanni Maria Farinella, and Stavroula Moug-
iakakou. A multi-task learning approach for meal as-
sessment. In Proceedings of the Joint Workshop on
Multimedia for Cooking and Eating Activities and Mul-
timedia Assisted Dietary Management, CEA/MADiMa
’18, pages 46–52, New York, NY, USA, 2018. ACM. 4

[23] Niki Martinel, Gian Luca Foresti, and Christian Mich-
eloni. Wide-slice residual networks for food recogni-
tion. CoRR, abs/1612.06543, 2016. 4

[24] T. Ege and K. Yanai. Simultaneous estimation of food
categories and calories with multi-task cnn. In 2017
Fifteenth IAPR International Conference on Machine
Vision Applications (MVA), pages 198–201, May 2017.
4

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/java
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/java
https://play.google.com/store/apps/details?id=edu.ucuccs.nutrivision&hl=en
https://play.google.com/store/apps/details?id=edu.ucuccs.nutrivision&hl=en
https://www.nutritionix.com/database

